Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Sci Transl Med ; 15(697): eadf4549, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20233638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Mice , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents
2.
Nutrients ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2324174

ABSTRACT

Elevated low-density lipoprotein (LDL) cholesterol levels lead to atherosclerosis and platelet hyperaggregability, both of which are known culprits of arterial thrombosis. Normalization of LDL cholesterol in familial hypercholesterolemia (FH) is not an easy task and frequently requires specific treatment, such as regularly performed lipid apheresis and/or novel drugs such as proprotein convertase subtilisin kexin 9 monoclonal antibodies (PCSK9Ab). Moreover, a high resistance rate to the first-line antiplatelet drug acetylsalicylic acid (ASA) stimulated research of novel antiplatelet drugs. 4-methylcatechol (4-MC), a known metabolite of several dietary flavonoids, may be a suitable candidate. The aim of this study was to analyse the antiplatelet effect of 4-MC in FH patients and to compare its impact on two FH treatment modalities via whole-blood impedance aggregometry. When compared to age-matched, generally healthy controls, the antiplatelet effect of 4-MC against collagen-induced aggregation was higher in FH patients. Apheresis itself improved the effect of 4-MC on platelet aggregation and blood from patients treated with this procedure and pretreated with 4-MC had lower platelet aggregability when compared to those solely treated with PCKS9Ab. Although this study had some inherent limitations, e.g., a low number of patients and possible impact of administered drugs, it confirmed the suitability of 4-MC as a promising antiplatelet agent and also demonstrated the effect of 4-MC in patients with a genetic metabolic disease for the first time.


Subject(s)
Blood Component Removal , Hyperlipoproteinemia Type II , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Subtilisin , Proprotein Convertase 9 , Proprotein Convertases/therapeutic use , Hyperlipoproteinemia Type II/drug therapy , Cholesterol, LDL , Blood Component Removal/methods
3.
Nat Microbiol ; 8(6): 1051-1063, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320827

ABSTRACT

Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Monoclonal/pharmacology
4.
Emerg Microbes Infect ; 12(1): 2210237, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2320320

ABSTRACT

The SARS-CoV-2 Omicron subvariants have dominated the pandemic due to their high transmissibility and immune evasion conferred by the spike mutations. The Omicron subvariants can spread by cell-free virus infection and cell-cell fusion, the latter of which is more effective but has not been extensively investigated. In this study, we developed a simple and high-throughput assay that provides a rapid readout to quantify cell-cell fusion mediated by the SARS-CoV-2 spike proteins without using live or pseudotyped virus. This assay can be used to identify variants of concern and to screen for prophylactic and therapeutic agents. We further evaluated a panel of monoclonal antibodies (mAbs) and vaccinee sera against D614G and Omicron subvariants, finding that cell-cell fusion is substantially more resistant to mAb and serum inhibition than cell-free virus infection. Such results have important implications for the development of vaccines and antiviral antibody drugs against cell-cell fusion induced by SARS-CoV-2 spikes.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Cell Fusion , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/pharmacology , Antiviral Agents , Spike Glycoprotein, Coronavirus/genetics
5.
Front Immunol ; 14: 1004795, 2023.
Article in English | MEDLINE | ID: covidwho-2294037

ABSTRACT

The immune system plays a significant role in multiple sclerosis. While MS was historically thought to be T cell-mediated, multiple pieces of evidence now support the view that B cells are essential players in multiple sclerosis pathogenic processes. High-efficacy disease-modifying therapies that target the immune system have emerged over the past two decades. Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and CD20+ T cells and efficiently suppress inflammatory disease activity. These monotherapies prevent relapses, reduce new or active magnetic resonance imaging brain lesions, and lessen disability progression in patients with relapsing multiple sclerosis. Rituximab, ocrelizumab, and ofatumumab are currently used in clinical practice, while phase III clinical trials for ublituximab have been recently completed. In this review, we compare the four anti-CD20 antibodies in terms of their mechanisms of action, routes of administration, immunological targets, and pharmacokinetic properties. A deeper understanding of the individual properties of these molecules in relation to their efficacy and safety profiles is critical for their use in clinical practice.


Subject(s)
Antigens, CD20 , Immunologic Factors , Multiple Sclerosis , Humans , Antigens, CD20/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Recurrence , Rituximab/therapeutic use , Rituximab/pharmacology , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
6.
Commun Biol ; 6(1): 364, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2261567

ABSTRACT

Due to the continuous evolution of SARS-CoV-2, the Omicron variant has emerged and exhibits severe immune evasion. The high number of mutations at key antigenic sites on the spike protein has made a large number of existing antibodies and vaccines ineffective against this variant. Therefore, it is urgent to develop efficient broad-spectrum neutralizing therapeutic drugs. Here we characterize a rabbit monoclonal antibody (RmAb) 1H1 with broad-spectrum neutralizing potency against Omicron sublineages including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, BA.3 and BA.4/5. Cryo-electron microscopy (cryo-EM) structure determination of the BA.1 spike-1H1 Fab complexes shows that 1H1 targets a highly conserved region of RBD and avoids most of the circulating Omicron mutations, explaining its broad-spectrum neutralization potency. Our findings indicate 1H1 as a promising RmAb model for designing broad-spectrum neutralizing antibodies and shed light on the development of therapeutic agents as well as effective vaccines against newly emerging variants in the future.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Antibodies, Monoclonal/pharmacology , SARS-CoV-2/genetics , Cryoelectron Microscopy
7.
J Med Chem ; 66(7): 4417-4433, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2273472

ABSTRACT

Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a key role in the pathogenesis and physiology of inflammatory and autoimmune diseases, such as coronary heart disease, cancer, Alzheimer's disease, asthma, rheumatoid arthritis, and most recently COVID-19. IL-6 and its signaling pathway are promising targets in the treatment of inflammatory and autoimmune diseases. Although, anti-IL-6 monoclonal antibodies are currently being used in clinics, huge unmet medical needs remain because of the high cost, administration-related toxicity, lack of opportunity for oral dosing, and potential immunogenicity of monoclonal antibody therapy. Furthermore, nonresponse or loss of response to monoclonal antibody therapy has been reported, which increases the importance of optimizing drug therapy with small molecule drugs. This work aims to provide a perspective for the discovery of novel small molecule IL-6 inhibitors by the analysis of the structure-activity relationships and computational studies for protein-protein inhibitors targeting the IL-6/IL-6 receptor/gp130 complex.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Interleukin-6 Inhibitors , Molecular Docking Simulation , Autoimmune Diseases/drug therapy , Antibodies, Monoclonal/pharmacology , Interleukin-6 , Structure-Activity Relationship
8.
Immunotherapy ; 14(14): 1149-1164, 2022 10.
Article in English | MEDLINE | ID: covidwho-2268835

ABSTRACT

In the past decade, the emergence of biologics targeting human cytokine networks has advanced a new era in atopic dermatitis therapy. Dupilumab, in particular, the most widely studied and used IL-4/IL-13 inhibitor, has been considered a milestone in the treatment of patients with moderate-to-severe atopic dermatitis. In addition to the IL-4 and IL-13 pathways, many other cytokines and receptors have been newly targeted as therapeutic options. In this review, the authors provide an overview of the approved and tested biologics and JAK inhibitors for the treatment of atopic dermatitis, including their advantages and limitations.


Subject(s)
Biological Products , Dermatitis, Atopic , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Biological Products/therapeutic use , Dermatitis, Atopic/drug therapy , Humans , Immunologic Factors/therapeutic use , Immunotherapy , Interleukin-13 , Interleukin-4
9.
Proc Natl Acad Sci U S A ; 120(15): e2217590120, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2264189

ABSTRACT

Antibodies play a central role in the immune defense against SARS-CoV-2. Emerging evidence has shown that nonneutralizing antibodies are important for immune defense through Fc-mediated effector functions. Antibody subclass is known to affect downstream Fc function. However, whether the antibody subclass plays a role in anti-SARS-CoV-2 immunity remains unclear. Here, we subclass-switched eight human IgG1 anti-spike monoclonal antibodies (mAbs) to the IgG3 subclass by exchanging their constant domains. The IgG3 mAbs exhibited altered avidities to the spike protein and more potent Fc-mediated phagocytosis and complement activation than their IgG1 counterparts. Moreover, combining mAbs into oligoclonal cocktails led to enhanced Fc- and complement receptor-mediated phagocytosis, superior to even the most potent single IgG3 mAb when compared at equivalent concentrations. Finally, in an in vivo model, we show that opsonic mAbs of both subclasses can be protective against a SARS-CoV-2 infection, despite the antibodies being nonneutralizing. Our results suggest that opsonic IgG3 oligoclonal cocktails are a promising idea to explore for therapy against SARS-CoV-2, its emerging variants, and potentially other viruses.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , Opsonization , SARS-CoV-2 , Phagocytosis , Antibodies, Monoclonal/pharmacology
10.
PLoS Pathog ; 19(1): e1011085, 2023 01.
Article in English | MEDLINE | ID: covidwho-2224483

ABSTRACT

Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the ß-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Spike Glycoprotein, Coronavirus/genetics
11.
Expert Opin Drug Discov ; 18(3): 231-245, 2023 03.
Article in English | MEDLINE | ID: covidwho-2187609

ABSTRACT

INTRODUCTION: Direct-acting SARS-CoV-2 antiviral monoclonal antibodies have been an integral part of therapeutic strategies against COVID-19 pandemic. The monoclonal strategy was jeopardized by the emergence of new variants and resistant strains, making many monoclonal antibodies quickly obsolete. Nevertheless, a possible strategy consists in the use of antibody cocktails and the development of the cilgavimab + tixagevimab in combination is placed in this context. AREAS COVERED: In this review, we describe the development of the cilgavimab + tixagevimab cocktail, from pre-clinical to real-world evidence. EXPERT OPINION: The pre-clinical and clinical development of cilgavimab + tixagevimab followed a similar path to that of the antibodies developed in the earlier stages of the pandemic. Both antibodies have been developed from convalescent plasma and have been shown to be effective in clinical trials in prophylaxis and in early therapy. This cocktail has found its position in therapy especially in immunocompromised subjects for whom vaccine prevention is not feasible. The cocktail strategy, together with a more stable pandemic situation, could ensure a certain longevity to the drug against resistance, especially when compared with that of other antibodies. Recently emerged Omicron sub-lineages have demonstrated the ability to escape this cocktail's activity and so the future of this treatment could be compromised.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19 Serotherapy , Antibodies, Monoclonal/pharmacology
12.
Circ Res ; 132(3): 290-305, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2194410

ABSTRACT

BACKGROUND: SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS: We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS: Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS: The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.


Subject(s)
COVID-19 , Thrombosis , Humans , Antibodies, Monoclonal/pharmacology , Blood Platelets/metabolism , COVID-19/metabolism , Cross-Sectional Studies , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology , Toll-Like Receptor 4/metabolism
13.
Trends Pharmacol Sci ; 44(2): 85-97, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165902

ABSTRACT

Monoclonal antibodies represent an exciting class of therapeutics against respiratory viral infections. Notwithstanding their specificity and affinity, the conventional parenteral administration is suboptimal in delivering antibodies for neutralizing activity in the airways due to the poor distribution of macromolecules to the respiratory tract. Inhaled therapy is a promising approach to overcome this hurdle in a noninvasive manner, while advances in antibody engineering have led to the development of unique antibody formats which exhibit properties desirable for inhalation. In this Opinion, we examine the major challenges surrounding the development of inhaled antibodies, identify knowledge gaps that need to be addressed and provide strategies from a drug delivery perspective to enhance the efficacy and safety of neutralizing antibodies against respiratory viral infections.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
14.
J Pharmacol Exp Ther ; 381(2): 129-136, 2022 05.
Article in English | MEDLINE | ID: covidwho-2152871

ABSTRACT

The incidence of fatal drug overdoses in the United States is an alarming public health threat that has been exacerbated by the COVID-19 pandemic, resulting in over 100,000 deaths between April 2020 and April 2021. A significant portion of this is attributable to widespread access to fentanyl and other synthetic opioids, alone or in combination with heroin or psychostimulants, such as cocaine or methamphetamine. Monoclonal antibodies (mAb) offer prophylactic and therapeutic interventions against opioid overdose by binding opioids in serum, reducing distribution of drug to the brain and other organs. Here, we investigated the efficacy of a leading antifentanyl mAb, clone HY6-F9, in reversal and prevention of fentanyl-induced toxicity compared with the opioid receptor antagonist naloxone (NLX) in rats. In postexposure models, rats were challenged with fentanyl, followed by HY6-F9, NLX, or both. HY6-F9 reversed fentanyl-induced antinociception, respiratory depression, and bradycardia, and rats retained protection against additional challenges for at least 1 week. Although intravenous NLX reversed fentanyl-induced respiratory depression more rapidly than mAb alone, kinetics of reversal by intravenous mAb were similar to subcutaneous NLX. Coadministration of mAb and NLX provided greater protection than individual treatments against high doses of fentanyl. Prophylactic administration of mAb reduced the ED50 of NLX approximately twofold against 2.25 mg/kg of fentanyl. Finally, mAb sequestered fentanyl and its metabolite norfentanyl in serum and reduced brain concentrations of fentanyl. These results support the translation of mAb as medical interventions alone or in combination with NLX to prevent and reverse fentanyl-related overdose. SIGNIFICANCE STATEMENT: Fentanyl-related overdoses have increased dramatically in the US and worldwide. Currently, approved pharmacotherapies for treatment of opioid use disorder and reversal of overdose are not sufficient to curb the incidence of opioid-related deaths. Additionally, fentanyl and its potent analogs present a potential risk from use in deliberate poisoning or chemical attacks. This study demonstrates the use of monoclonal antibodies as a countermeasure to fentanyl-induced toxicity in pre- and postexposure scenarios, supporting their use in combination with the opioid antagonist naloxone.


Subject(s)
COVID-19 , Drug Overdose , Respiratory Insufficiency , Analgesics, Opioid/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Drug Overdose/drug therapy , Fentanyl , Humans , Naloxone/pharmacology , Naloxone/therapeutic use , Narcotic Antagonists/pharmacology , Pandemics , Rats , Respiratory Insufficiency/drug therapy
15.
Viruses ; 14(12)2022 11 29.
Article in English | MEDLINE | ID: covidwho-2143720

ABSTRACT

We have recently revealed that the new SARS-CoV-2 Omicron sublineages BA.4 and BA.5 exhibit increased resistance to cilgavimab, a therapeutic monoclonal antibody, and the resistance to cilgavimab is attributed to the spike L452R substitution. However, it remains unclear how the spike L452R substitution renders resistance to cilgavimab. Here, we demonstrated that the increased resistance to cilgavimab of the spike L452R is possibly caused by the steric hindrance between cilgavimab and its binding interface on the spike. Our results suggest the importance of developing therapeutic antibodies that target SARS-CoV-2 variants harboring the spike L452R substitution.


Subject(s)
Antibodies, Monoclonal , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/pharmacology , COVID-19 , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
J Clin Invest ; 132(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2064379

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Nucleocapsid , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
17.
Sci Rep ; 12(1): 17047, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2062257

ABSTRACT

COVID-19 is the global pandemic that affected our population in the past 2 years. Considerable research has been done to better understand the pathophysiology of this disease and to identify new therapeutic targets, especially for severe cases. Galectin-3 (Gal-3) is a receptor present at the surface of different cell types, namely epithelial and inflammatory cells, which has been described as a severity marker in COVID-19. The activation of Gal-3 through its binding protein (Gal-3BP) is directly linked to the production of pro-inflammatory cytokines that contribute for the cytokine storm (CS) observed in severe COVID-19 patients. Here, we show that D2, a recombinant fragment of the lectin-binding region of Gal-3BP was able to stimulate the expression of IL-6 in colon and lung epithelial cell lines in ß-galactoside dependent manner. We further show that D2-induced IL-6 augmentation was reduced by the anti-Gal-3BP monoclonal antibody 1959. Our data confirm and extend prior findings of Gal-3BP mediated IL-6 induction, enlightening the potential of its antibody-mediated s blockage for the prevention and treatment of CS and severe disease in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Carrier Proteins , Cell Line , Cytokine Release Syndrome , Cytokines/metabolism , Galectin 3/metabolism , Humans , Interleukin-6/metabolism
18.
Cell Rep ; 41(5): 111528, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2060517

ABSTRACT

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/genetics , Neutralization Tests , Antibodies, Viral/therapeutic use , Viral Envelope Proteins , Membrane Glycoproteins/genetics , Antibodies, Neutralizing/therapeutic use
19.
Front Immunol ; 13: 966236, 2022.
Article in English | MEDLINE | ID: covidwho-2022749

ABSTRACT

Class 1 and 2 monoclonal antibodies inhibit SARS-CoV-2 entry by blocking the interaction of the viral receptor-binding domain with angiotensin-converting enzyme 2 (ACE2), while class 3 antibodies target a highly conserved epitope outside the ACE2 binding site. We aimed to investigate the plasticity of the spike protein by propagating wild-type SARS-CoV-2 in the presence of class 3 antibody S309. After 12 weeks, we obtained a viral strain that was completely resistant to inhibition by S309, due to successively evolving amino acid exchanges R346S and P337L located in the paratope of S309. The antibody lost affinity to receptor-binding domains carrying P337L or both amino acid exchanges, while ACE2 binding was not affected. The resistant strain replicated efficiently in human CaCo-2 cells and was more susceptible to inhibition of fusion than the original strain. Overall, SARS-CoV-2 escaped inhibition by class 3 antibody S309 through a slow, but targeted evolution enabling immune escape and altering cell entry. This immune-driven enhancement of infectivity and pathogenicity could play an important role in the future evolution of SARS-CoV-2, which is under increasing immunological pressure from vaccination and previous infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Amino Acids , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Caco-2 Cells , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
20.
Nat Chem Biol ; 18(11): 1270-1276, 2022 11.
Article in English | MEDLINE | ID: covidwho-2016763

ABSTRACT

Omicron and its subvariants have rendered most authorized monoclonal antibody-based treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ineffective, highlighting the need for biologics capable of overcoming SARS-CoV-2 evolution. These mostly ineffective antibodies target variable epitopes. Here we describe broad-spectrum SARS-CoV-2 inhibitors developed by tethering the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), to known non-neutralizing antibodies that target highly conserved epitopes in the viral spike protein. These inhibitors, called receptor-blocking conserved non-neutralizing antibodies (ReconnAbs), potently neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron. Neutralization potency is lost when the linker joining the binding and inhibitory ReconnAb components is severed. In addition, a bi-functional ReconnAb, made by linking ACE2 to a bi-specific antibody targeting two non-overlapping conserved epitopes, defined here, shows sub-nanomolar neutralizing activity against all VOCs, including Omicron and BA.2. Given their conserved targets and modular nature, ReconnAbs have the potential to act as broad-spectrum therapeutics against SARS-CoV-2 and other emerging pandemic diseases.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/metabolism , Peptidyl-Dipeptidase A/metabolism , Epitopes , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL